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Abstract

This research addresses the implementation of an electronic element,
which emulates the biological synaptic interconnection, in an artificial
electronic neural system. The basic interconnection, or the weight, consists
of an electrically reprogrammable, nonvolatile, analog conductance which
programs at 5V levels. In addition, the fabrication technology for this
synaptic interconnection is compatible with existing CMOS VLSI process.
The attractive features of this synaptic weight will be discussed in this
report. Furthermore, this report examines the material needs, the device
structures, the use of the synaptic weights in a two-tap weight linear
adaptive neural-like circuit and the issue of integrating both the synaptic
weight elements and the peripheral circuit onto a single silicon wafer.

1. Introduction

The current surge of enthusiasm for neural network aims to construct systems that can learn

or modify their behavior according to the environment. There are many similarities which exist

between this new class of machine and human beings. One of these similarities is the massive

parallelism in processing information. Parallel processing1 concepts are in stark contrast to the

operations of modern digital computers that perform large numbers of sequential operations very

rapidly and accurately.

Researchers believe the synaptic junctions in a neural system are the local memory sites

and provide the physiological basis for the distributed parallel systems.2. 3 These synapses are not

only modifiable but also serve the functions of storing and transmitting information from neuron to

neuron. To reduce the complex modelling required for the synaptic interconnection, the

representation of the synapse has been simplified to a single ideal junction between the output of

neurons axons) and the inputs to neurons (dendrites). Synaptic modification requires information

from the input and the output of the neuron in order to perform complex recognition. Therefore. the

nature of the synaptic junction and the principle or algorithm which controls local orgamization at

zhe neuron level become two central issues pertaining to neural networks research.

The recent interest in neural networks4' 5 is a direct consequence of the programmability

which is an essential feature of 1carning machines, associative memories, and adapTdve signal

processors. Programmability requires a modiuication of the synaptic strength in the language of

neurobiology. If we seek an efficient hardware implementation of electronic neural systems, then

the synapses - as well as the network itself- should be analog. Several attempts have been made to

realize programmable synapses, either digitally6 or with temporary storage on the input capacitance



of a MOS Transistor 7 ' 8 to alter the latter's analog conductance. The former approach stores the

weight information in digital registers and thus suffers from excessive chip area and power

consumption. On the other hand, although the MOS Transistor provides an analog synaptic

strength (weight) in a small chip area, the weight is temporary and requires periodic refresh similar

to a DRAM. Thus, this dynamic refresh approach lacks the nonvolatility and storage properties of

an EEPROM cell. Researchers at Intel have reported an electrically trainable artificial neural

network with floating gate device as the synaptic element.9 Although floating gate device has the

property of nonvolatility, its high programming voltage requirement prevents it from being

technologically compatible with scaled CMOS process.

In this research report we describe a new approach to obtain an electrically reprogrammnable or

modifiable synaptic weight to be used as a basic functional element in electronic neural systems.

The salient features of this network element are the following:

" Low programming voltages(5-10V) which are compatible with peripheral

CMOS VLSI technology in contrast with Floating Gate approaches.

" Low power dissipation (< 1 LLW).

* Dynamic Range of 1000:1 (60 dB).

" Nonvolatile features which mimic biological synapses with respect to memory
loss (e.g. 20% of the information available after 10 years) and reinforced
learning (e.g. successive interrogation enhances memory retention).

" Small synaptic area on a VLSI chip (e.g. less then 20rum 2 for 1.25 um feature

sizes).

" Extensive erase/write programming cycles are possible with this synapse (>
108 cycles) in contrast with Floating Gate approaches.

" Inherent radiation damage resistance beyond a total dosage of 1MRad (Co6 )

and 109 Rad/sec transient which is not possible with Floating Gate technology.
Thus, if radiation damage resistance of neural networks is an important issue.
then the SONOS devices have demonstrated success in this area.

The basic nonvolatile device structure, which we describe in this report was first introduced as

a dig-tai nonvolatile memory cell in the summer of 1987 at the IEEE Device Research Conference 0

by researchers at Lehigh University. We have had a continual involvement uver a 20 year pernod

with nonvolatile memories, beginning in the late 60's where we had programming voltages of 251. to

the late S0's wiLth our novel 5V SONOS device structures. During this time period we introcduced -e

use of CCD's and nonvolatile memories1 ' L. % in nonvolatile charge addressed memories

NOVCAM'. These ideas have been employed recently for neural network circuits by researclaers at



Lincoln Laboratories. 14 Our recent work recognizes the inherent analog conductance aspect of the

nonvolatile SONOS memory device which makes it a perfect candidate for the modifiable synapse in

an electronic neural system.

In addition to the realization of an electronic element to simulate the synaptic interconnections

of a neural network, we must have a method or algorithm to change or reprogram these

interconnections and, thus, alter the connectivity of the neural network. We have had experience

with a particular form of an algorithm, namely, the Widrow-Hoff Least Mean Square (LMS) 15 error

algorithm or in neural network terminology - the so-called 'delta rule'. In the late 70's we researched

a CCD Adaptive Analog Signal Processor 16 , '7 which realizes the 'delta rule' with CCD analog delay

lines and electrically reprogrammable MNOS analog conductance weights. These weights were

nonvolatile memory transistors whose analog conductance was programmed with voltages ranging

from 15-25V. Our recent work on 'scaling' these programmable analog conductances has resulted in

a new device structure, called the SONOS nonvolatile memory transistor, which can *e

reprogrammed with voltages ranging from 5-10V. This work has recently been described at the 1991

11th IEEE Nonvolatile Semiconductor Memory Workshop. 18 These voltage levels are com)a"bie

with 'scaled' CMOS VLSI technology which has 12-155V breakdown voltages for 1.25um feature .izes.

In this report we describe our recent work on the electrically reprogrammable fmodifiable; SONCS

nonvolatile synapse and a simple electronic neuron with 2 synaptic weights. We discuss this two-tan

weight linear adaptive neuron in terms of the technology, the electrical characteristics of the

.synapses, and their performance in this simple test vehicle - a 'delta rule' adaptive signal processor.

2. Technology and Characterization of SONOS Synaptic Weight

The programmable synapse is the result of an ongoing effort at Lehigh University to '  -ae' :he

programming voltages required to alter the analog conductance of a nonvolatile memo" - transistor

with a multi-layer ,oxide-nitride-oxide> gate insulator as shown in Fig. i. Recent .zorts in Scaing

this device have resulted in a SONOS (SilicorBlocking Oxide'NitrideTunneing Oxide Silicon

nonvolatile memory transistor which is electrically reprogrammable at CMOS voitage .eveis.

Typically, the tunneling oxide is 15-25X, the storage rinde is 50-10fl1 and the bioc'ng imde :s

85-30A. Fig.2 shows the Transmission Electron Microscope, TEM) :)notograph of the cross sec cnai

view of the SONOS transistor. This device is similar to a SNOS transistor except for the addion if

the blocking oxide which is used to inhibit injection of carriers from the polysilicon gate elec"rode
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and also to improve the memory retention by prohibiting the transfer of stored charge from the

nitride to the gate electrode. As the result, the blocking oxide permits he entire dielectric sandwich

to be scaled to dimensions where the programming voltages ranging from 5-10 V are possible.

When the SONOS device is subjected to a positive (or negative) programming pulse, electrons

(or holes) are injected into the silicon Pitride layer by means of tunneling across the thin tunnel

oxide. The injected charges are trapped by the silicon nitride and thus shift the threshold voltage

positively (or negatively). The threshold voltage of a SONOS transistor can be written as

Qf Xob X, - X 2° "4 z. q -NB OB
VTH = OGS - -,- + (E *- )QN +  B Ceff

eff aox '

where 4t is the bulk potential, OGS is the gate to semiconductor workfunction, Qf is the fixed charge

at the tunneling oide-silicon interface, E0. and EN are the dielectric permittivities of the oxide and

nitride, s is the dielectric permittivity of the bulk silicon. xo0 is the tunnel oxide thickness, x,, is the

blocking oxide thickness, xn is the nitride thickness, !is the charge centroid in the insulator, and QN

is the charge stored in the nitride. NB is the bulk doping density, and

Ceff= 
aX

We assume that the tunnel oxide and blocking oxide have the same dielectric permittivity even

though. it is known that the tunnel oxide is silicon rich and the blocking oxide is an oxynitride. The
values of the charge centroid ! and the charge stored in the nitride QN will change as the device is

written or erased. The analog conductance of the SONOS synaptic weight may be written as

W

9,is = :e T Cf (VGe -VTf_

where .eff is the effective carrier mobility. VGS is the read voltage, and VTH is the electrically

modifiable threshold voltage given in equation (1'). Therefore. there are two ways which the analog

channel conductance can be altered: (1) change the value of VGs or 2) change the value of VTH.. Li

our study, the latter approach is chosen.

The SONOS transistors are characterized for their memory properties by using the test station

described in .Aniirban Roy's Master's Thesis. 19  This test station allows one to take both the
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erase/write and retention measurements. To investigate the memory loss/retention properties of the

synaptic weight element, retention measurements are taken. The retention characteristics are

obtained by applying positive (negative) five volts to the gate for 10 seconds to place the device in the

write (erase) state and then measuring the turn-on voltage after a varying delay time. The turn-on

voltage is related to the threshold voltage by

VT = VTH+ -D (4)

with IDS as the forced drain to source current during measurement and

f3 P'ff (T) Ceff

where W is the width of the transistor, L is the length of the transistor, and aeff is the effective

mobility. The effective mobility is the bulk mobility reduced by Coulombic and surface scattering of

carriers in the inversion layer. This mobility is influenced by the gate and substrate voltages. 20 For

a SONOS transistor retention measurements indicate that greater than 20 percent of the memory

window remains after a projected 10 year delay time as shown in Fig. 3. The erasewrte

measurements indicate the programming speed of the synaptic weight element. To measure the

writing (erasing) speed, negative (positive) five volts are applied to the gate for 10 seconds to piace

the device in the erase (write) state. Then. positive (negative) five volts are applied to the gate with

varying pulse widths and the turn-on voltage is measured after each pulse width. The erase'write

characteristics of the SONOS memory transistor are shown in Fig. 4. A wide dynamic range is one

of the essential properties for the synaptic weight element. and Fig. 5 illustrates a 60 d.B in dynamic

range after =5V programming for the SONOS synaptic weight. In addition, a recent study in

reliability has demonstrated the inherent resistance of the SONOS memory transistor to radiation

damage VTH = 0.1V, with VGS = + 5V at LMfRad Co ° radiation. 2 '

3. Single-level Linear Adaptive Neuron

We have incorporated the SONOS synaptic weights into a single-level linear neuron-:lke

crcuit using a Widrow-Hoffs delta learning rule.- 5 The circuit is built with a hybrid breadboard of

CMOS components for the control logic and the algorithm impDiementation and :he SONCS

nonvolatile memory transistors to demonstrate the voltage level compatibility of both SONOS and

CMOS technologies. Many researchers believe that the neural system is made up of several lave-s'
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of neurons and Fig. 6 shows the multi-layer architecture of an artificial neural network. The first

layer of neurons, the input layer. can be best thought as the sensory neurons in a human body. The

weight connections between the input layer and the middle hidden layer are normally considered to

be feedforward and fixed. On the other hand, the weight connections between the middle hidden

layer and the output layer are considered to be feedback in nature. Our work has concentrated on

the implementation of two neurons in the hidden layer and one output neuron as highlighted in the

figure.

Fig. 7 shows the block diagram of the single-level linear adaptive neuron. A desired response

(or external teacher), d(m). is presented to the neuron as the training signal. If the output of the

linear adaptive neuron is not trained, then there exists a mismatch between the output of the linear

adaptive neuron, y(m), and the desired response, d(m).

vm') = d(m) - y(m) 6)

where z m) is the error genera:ed. This error is then used by a learning algorithm. namely the

Clipped-data Least Mean Error algorithm, to minimize the error generated and thereby training .he

neuron to the correct response. This single-level linear adaptive neuron has two tap weights. each

weight is composed of two SONOS analog electrically reprogrammable conductances as shown in

Fig. 8. Since the synaptic weight must be either positive or negative in value, we have chosen a

differential weighting scheme. If the analog conductance connecting the positive summing path to

the differential operational amnpner is greater than the analog conductance connecting the negative

summing path to the differential operational amplifier, then the weight is positive in value. On the

other hand. if the opposite case is trae. then the weight is negative in value. Positive weight 7aiue

corresponds to the excitatory s-naptic strength and the negative weight value corresponds to the

inhibitory svnaptic strength.

In operation, the input signal rn is passed through a switcned capacitor analog delay "dne

where the input signal is sampied and delayed to create two tapped signal outputs .,,m' and ,,m).

These tapped signals multiply to their corresponding programmable weights I'l and .. and the

result is summed linearly at the summing amplifier. The output :.1m) can be expressed as:

vnm I= ' W(m).x_.,
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where m is the time index and k is the spatial index. A correlated double sampling technique 22is

employed in the circuit to remove the unwanted noise and offset voltages introduced by the summing

amplifiers. The linear adaptive neuron is configured to perform Widrow-Hoffs delta rule as:

Wk(M+l) = Wk(m) + A Wk(m) (8)

where A W(m) is the incremental weight to be calculated by the clipped-data least mean square error

(C-LMSE) algorithm23:

-A Wk(m) = 2.u jE(m) .Sgn[E(m)] Sgn[x(m-k)] (9)

where .t is the convergence factor. Compared to the regular Least Mean Square Error algorithm, the

input signal amplitude is clipped in the learning algorithm. This algorithm eliminates the usage of a

four quadrant multiplier needed for the LMS error algorithm. The sign multiplication in the

incremental weight calculation is essentially an Exclusive OR operation and the output of the

Exclusive OR gate controls the path of proper gate programming voltage for the SONOS synyaptic

weight. If the convergence factor is small. then the system will minimize the misadjustment caused

by the variance of the weights; however, this also results in a long convergence time. Conversely. if

we choose to use a larger convergence factor, then the convergence time of the system is shortened

with the penalty of larger misadjustment. The backpropagating error is used to calculate the

adjustments to minimize the system error as shown in equation (9). Once the error is minimized.

the system is said to be in its steady state condition2 4 where the output of the system. ytm:. is the

best match of the training signal, d(m). or the 'external teacher'.

The incremental weight updae is essentially a cross correlation between the error and the

clilped input data vectors. The update stops when the two vectors become orthogonal. Sometimes.

the network may be overcorrected initially, however, the error will be quickly minimized by the

!earning algorithm and the system reaches its desired response. The digital delay line provides the

sgn information of the input to the learning algorithm. A special steering network is designed to

switch the proper programming voltages to the gate terminals of the SONOS transistors once the

incremental weights are calculated.



4. Experimental Results

There are two main types of characteristics from which the electrical performance of the linear

adaptive neuron can be evaluated. The first characteristic, namely the output and training signals

versus time characteristics, gives the information on how well the output signal approximates the

training signal especially in the phase relationship between these two signals. The second

characteristic, namely the error signal versus time characteristics, shows how fast the linear

adaptive neuron adapts before it reaches its minimum error. A typical output and training signals

versus time characteristic consists of two parts: the initialized and the adapted part. In the

initialized part, the weights are first initialized to a known state (either the fully positive or the fully

negative state) and then the weights are subjected to a reading voltage to read out the weight

information and the output signal and the training signal are compared and recorded. The linear

adaptive neuron is then allowed to adapt itself to the training signal and the results are shown in

the adapted part of the characteristics. Figure 9 shows the outout and training signal versus time

characteristic.

A typical error signal versus time characteristic is obtained with initialized weight values and

monitoring the error signal with time. Our observation indicates the weight initialization scheme

affects the convergence behavior of the linear adaptive neuron. This phenomenon is attributed to

the nonsymnimetric erase and write characteristics of the SONOS transistor. Therefore. one weight

initialization scheme may require more erase action taking place than another weight initialization

scheme, causing a difference in convergence characteristics. Figures 10 shows a typical error versus

time characteristac.

5. Technical Progress

The performance of the linear adaptive neuron depends strongly on the programming

characteristics of the synaptic weight elements. Therefore. a fabrication ran aimed specifically at

improving the programming speed of the synaptic weight elements has been completed and fuill-,

char oterized. The main differences between the new and the old devices are the thickMesses of the

storage nitride layer and the blocking oxide layer. By reducing the mntride layer and increasing the

blocking oxide layer thickiesses, the gate injection of carers is minimized. Furthermore. the

charge tunneled across the tunneling oxide is better retained n the nitride layer with a thicker

blocking oxide. As a result, the programming speed. indicated by the erasewrite characterization of

the new devices, demonstrates a roughly one order of magnitude improvement in the programming

8



speed (determined by the cross-over time as mentioned in the previous section) over the old de',.-ces

as shown in figure 11. In addition, the programming voltage dependence on the programming speed,

as shown in figure 11, illustrates an improvement of one order of magnitude in programming speed

with each one volt increment in the programming voltage. We have also incorporated the new

synaptic weight elements into the linear adaptive neuron. Since the programming speed of the new

synaptic weight elements has improved by a factor of 10, the convergence time (a measure of the

performance of the linear adaptive neuron) has been reduced by a factor of 10 accordingly as shown

in figure 12.

A fully computer controlled data acquisition system is an invaluable tool for synaptic weight

element characterization. The current measurement system requires the operator to manually set

up the measurement sequence and hand-record the data obtained. An automatic data acquisition

system enables the user to set up the measurements, and analyze the data, all under the control of

one console. The block diagram of such a system is shown in figure 13. A vital part of -he proposed

system, the IIPIB command/data interpretor has been successfully designed. constructed, and fully

tested for functionality. The schematic of the HPIB command/data interpretor is shown in fiure 14.

We have continued our efforts on the integration of the linear adaptive neuron into a singie

silicon wafer. We have layed out some of the vital parts of the linear adaptive neuron under the

Mentor Graphics package with a technology specifically geared to the fabrication process of our

microelectronics laboratory at Lehigh. Since we are creating analog ASICs. area and power

consumption of the designs have to be miniTni zed. Upon completion of layout. an extrac:ion of the

netlist and the parasitics are obtained and SPICE circuit simulations are performed o ensure the

designs are properly transferred into layouts. Figures 15 and 16 illustrate a sample of the layouts

already completed.

The research efforts during the period of March 1991 to September 1991 have resuited in a

paper to be presented at the International Joint Conference on Neural Networks IJLC-N_.N 91 to be

held in November at Singapore.

9



6. Proposed Investigations

We have demonstrated the direct relationship between the SONOS synapti= weight element

characteristics and the performLnce of the linear adaptive neuron. Therefore, we feel it is important

to continue our research efforts on the synaptic weight elements. In particular, the investigation of

how to make even faster devices has resulted in the fabrication plans of utilizing thinner tunneling

oxide thickness and p+ polysilicon gate material.

We have also pledged our effort to the development of the automatic data acquisition system to

further aid our research. A customized computer program will be written to drive and interface with

the existi-g measurement equipment. The data obtained can then be collected, formatted, and

analyzed with device parameter extraction routines.

We will focus on the layout design of the remaining parts of the linear adaptive neuron. We

believe the advent in SONOS device technology and the integration of the signal processing circuitry

as well as the synaptic weight element onto a single silicon wafer will make an impact to the

Artificial Intelligence Neural Network Technology field.

7. Conclusions

The SONOS nonvolatile memory transistor has been shown to be an ideal electronic element

for the electrically reprogrammable analog conductance in an artificial neural network. We have

demonstrated the attractive features of this synaptic weight for the use of large neural network

systems, for instance, low programming voltage (5-10V), low power dissiDation(<!.tW / synapse',

small chip area (estimated 20.m 2. weight cell for a 1.2 pm feature size), a dynamic range of 60 dB.

good memory retention (20 % window at a projected 10 years period), and endurance beyond 107

erase/write cycles. In addition, the SONOS synaptic weight has inherent resistance to radiation

damage (AVO. =01 V. with VgS=.--5V at 3MRad Co6 ° radiation). We have been continuing our efforts in

optimizing the modifiable synaptic weights to provide better electrical characteristics for neural

network applications.

We have also incoipirated the SONOS synaptic weight, into a single-level two tap linear

adaptive neuron employing a Widrow-Hoffs delta learning rule. The combination of CMOS control

circuits and SONOS synaptic weights has demonstrated the feasibility of integrating these two

technologies onto a single silicon wafer. The initial results are encouraging and promising and

10



jrovide insight and direction into the integration of these two technologies to realize large artificial

neural network systems.
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